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1 Introduction

Volatility swaps are swaps for which one counterparty agrees to the other a
notional amount times the di�erence between a �xed level and a oating level
of volatility. The �xed level is set by the writer of the swap and is determined
by a variety of factors, implied volatilities of the underlying asset. The oating
level is determined by a formula for the average variability of the asset over its
life. The resulting product is therefore a pure bet on the level of volatility that
institutional users are attracted to as an alternative to using options as a means
to take on or hedge volatility exposure. These swaps, however, are newer and
less well understood than options, and in particular very little has been written
concerning their risk management.

The market for volatility swaps at the time of this writing is dominated by
longer dated instruments with maturities in the one to �ve year range (for an
overview of the market, see Mehta (1999)). Consequently, risk management is
largely a matter of understanding uctuations in the mark-to-market value of
the swap. Recently a number of articles focusing on the pricing and hedging
of volatility swaps (see Carr and Madan (1998), Demeter�, Derman, Kamal
and Zou (1999)) have appeared. These articles demonstrate that it is possible
to hedge the payout risk of a variance swap using a combination of a static
position in options and a dynamic stock strategy, but say nothing of mark-to-
market risk. This article exclusively studies mark-to-market risk. We classify
the types of risks the holder of a volatility swap faces, and argue that some of
these risks are modelable and while others depend exclusively on the valuation
of out-of-the-money options whose values are not available in the market.
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2 De�nitions

We begin by de�ning the basic components of volatility and variance swaps. Let
S(t) be the value of a security at time t. A volatility swap on S is a contract
that is traded at a time (the trade date) t0 and that matures at a later time T
(the maturity date) with a strike price Kvol that is determined at time t0. We
refer to this as the fair value of volatility. The payout on the volatility swap is
given by the formula:

Pvol = N � (�R �Kvol) (1)

where �R is the realized volatility over the life of the swap and N is the swap
notional. The realized volatility is de�ned by the writer of the swap contract in
agreement with the counterparty. A typical de�nition is as follows:

�R =

vuut 1

T � t0

MX
i=1

�
Si � Si�1
Si�1

�2
(2)

for a swap coveringM return observations, with Si being the closing price of the
asset on the ith day. If the notional N is positive, the position is long; otherwise
it is short. For practical purposes, the fair value Kvol is stated as an annualized
percentage, often referred to as volatility points. The payout on a variance swap
is similarly de�ned as

Pvar = N � (�2
R
�Kvar) (3)

where now �2
R
is the realized variance over the life of the contract, and Kvar is

the variance strike quoted in volpoints
2.

We now derive the mark-to-market value of a variance swap for a time t that
falls between t0 and T: Write V (t0; t) for the realized variance from time t0 to
t: The variable V satis�es the following additivity property:

V (t0; T )(T � t0) = V (t0; t)(t� t0) + V (t; T )(T � t) (4)

It is this additivity that makes realized variance much easier to model than
realized volatility. From the decomposition (4) it follows easily that

V (t0; T ) = �V (t0; t) + (1� �)V (t; T ) ; (5)

where � is the proportion of time already elapsed on the swap by time t de�ned
by

�(t) =
t� t0
T � t0

: (6)

FromEquation (3) we see that at time t the holder of a variance swap has learned
something about the swap's �nal payout: it consists of a known, �xed amount
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(the realized variance up to time t) and an unknown amount, the variance for
the remaining life of the swap. This unknown variance can be completely hedged
by entering into an o�setting swap with notional (1��)N over the period (t; T )
with variance strike Kt. Therefore, the mark-to-market value of the variance
swap at time t must be

Var. Swap Value = Ne�r(T�t) (�(V (t0; t)�Kvar) + (1 � �)(Kt �Kvar)) (7)

where r is the continuously compounded risk free discount rate. We have ar-
ranged the equation to be intuitively easy to understand: it states that the
mark-to-market value of the variance swap is equal to a time-weighted average
of the realized payout on the variance swap through t and the change in the fair
value of variance (where by fair value of variance we mean the variance strike).
We will see later that the value Kt is a key factor in the risk management of
variance swaps. Some dealers call this quantity the unrealized volatility of the
underlying. In this paper we will simply refer to it as the variance strike of the
o�setting swap, or when there is no possibility of confusion, simply the variance
strike.

Unfortunately the lack of additivity for realized volatility means that there
is no simple formula for the mark-to-market value of a volatility swap. It is
not possible to hedge a partially matured volatility swaps with new volatility
or variance swaps or any other commonly traded instruments. For this reason
the exact pricing and marking-to-market depends on the choice of a stochastic
volatility model for the underlying, any number of which may be consistent with
observable market instruments. This is in contrast to the maturing variance
swap which can be hedged by entering into an o�-setting new variance swap (as
described above), and for which the fair value of variance can be replicated by
a portfolio of puts and calls.

While it is not possible to determine the mark-to-market value of a volatility
swap without specifying a stochastic volatility model, it is possible to bound
this value. As described in Moroko�, Akesson and Zhou (1999), the bounds can
be obtained from an arbitrage argument involving an optimal hedge in a new
volatility or variance swap. For example, a lower bound can be established by
entering into � units of an o�-setting volatility swap. For a given �, 0 < � <p
1� �, it can be shown that there is a worst case realized volatility scenario for

which the hedged position has a minimumvalue at expiry. The hedge parameter
� can then be chosen to maximize the value of this worst case. As the hedge
swap has zero value at time t, the mark-to-market value of the original volatility
swap must be at least as large this maximized worst case value (otherwise there
is an arbitrage opportunity). Similarly, a variance swap hedge can be used to
obtained an upper bound. This approach leads to the inequalities

Ne�r(T�t)
�
��(t) �Kvol

� � Vol. Swap Value � Ne�r(T�t)
�
�+(t)�Kvol

�
(8)
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where

��(t) =
q
�V (t0; t) + (1 � �)K2

vol
(t) (9)

�+(t) =
p
�V (t0; t) + (1 � �)Kvar(t) : (10)

Here Kvol(t) and Kvar(t) are the respective volatility and variance strikes for
swaps covering the period (t; T ).

The same result is obtained if it is assumed that Kvol(t), Kvar(t) and the
mark-to-market volatility swap value are all expected values of their associated
undetermined random components under some risk neutral measure through
an application of Jensen's inequality. The choice of the risk neutral measure
is equivalent to the choice of a stochastic volatility model, but this choice is
expressed only through the value of Kvol(t) in the bounds.

With these formulas in hand, we move on to the central concern of this
paper: what are the chief sources of mark-to-market risk for a volatility swap
and a variance swap? In the following section we identify and quantify these
sources, and later we build a model for measuring this risk. In what follows
we will primarily focus modeling the risks of variance swaps, while bearing in
mind that Equation (8) implies that our results for variance swaps apply at least
qualitatively for volatility swaps as well.

3 The Sources of Risk for a Variance Swap

The mark-to-market value of a variance swap has four important sources of risk:

1. Movements of fair value of volatility (strike risk): the fair value
of volatility Kt for an o�setting swap at time t (see Equation (7)) is the
dominant source of mark-to-market risk for a variance swap. Its move-
ments dominate continuous price movements of the underlying asset, so
that while when the swap matures its �nal value depends solely on the
intra-life movements of the underlying, mark-to-market risk is paradox-
ically determined almost exclusively by movements in fair value. The
movements of fair value of volatility are themselves driven by the move-
ments in implied volatility (to be explained below), and consequently the
risk associated with movements in fair value of volatility is called vega

risk. This risk is modelable and large. We will discuss how to model it
later.

2. Continuous underlying price movements (delta risk): if the pro-
cess governing the underlying's price movements consists of a continuous
component and a jump component, then under a large class of processes,
the continuous component is a negligible consideration in measuring the
risk of a volatility or variance swap. This risk as modelable and low.
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3. Asset price jumps (jump risk): jumps in the underlying's price can
cause sharp movements in the value of a variance swap. The associated
risk can be modeled with fat-tailed distributions for its risk factors or jump
di�usion processes for the underlying. However, the pricing and hedging
models that implicitly determine the mark-to-market value of a volatility
swap are based on the assumption of no jumps, leading to additional
model error (see Demeter�, et al (1999) for a discussion of the impact of
jumps on variance swap hedging). Such jumps may also have a signi�cant
impact on a dealer's risk appetite, leading to signi�cant changes in their
assessment of the fair value of volatility (see above). In addition the data
available for parameterizing any such model are insu�cient for creating
reliable forecasts of jump frequencies. As a consequence, we regard this
risk as high and unmodelable.

4. Illiquid implied volatility (illiquidity risk): the theoretical value of
the variance swap strike depends on the implied volatilities of options of
all strikes, although only a small fraction of those options have observable
prices. Put another way, movement in fair value of volatility are deter-
mined by movements in both observable and unobservable option values.
Unobservable option values are, of course, the implied volatilities of deep
out of the money calls and puts representing the far end of the volatility
skew. Therefore a given move in fair value of volatility implies a partic-
ular movement in tail of the volatility skew. This sensitivity is in fact
quite signi�cant. However, the level of this implied volatility and the daily
changes in the volatility skew in this unobservable region are essentially a
matter of opinion and are governed as much by tastes and preferences as
by any theory. This is a particularly thorny issue because a dealer's stance
on the riskiness of out-of-the-money puts may change due to a variety of
factors including an increased risk aversion. This steepening of the skew
can have signi�cant impact on the fair value of volatility and hence the
value of any volatility swap on the books. Should this change in view be
reected in the value of the volatility swaps on the books? This risk is
therefore unmodelable.

4 Basic Mark-to-Market Risk

In this section we will de�ne and discuss the mark-to-market risk and derive
some of the basic properties. As mentioned above we will focus exclusively
on the risk of a variance swap for which we de�ne the mark-to-market risk as
the uncertainty in swap's value from one period to the next. More formally,
at a time t, the mark-to-market risk for a period of time �t is related to the
uncertainty in

�M = M (t+�t)�M (t) : (11)
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This is a formal de�nition. To produce a more quantitatively useful de�nition,
we make use of the mark-to-market formula (7). For modeling purposes, it is
convenient to start from a slightly di�erent de�nition of realized variance than
the one above. If �(S(t); t) is the instantaneous volatility of the underlying asset
with price S(t), then the realized variance over a period (t1; t2) can be de�ned
as

V (t1; t2) =
1

t2 � t1

Z
t2

t1

�2(S(� ); � ) d�; (12)

which is the continuous time analogue of the square of equation (2). This
de�nition of realized variance clearly satis�es the additivity property of equation
(4). We then take the risk-neutral expectation at time t of the variance swap
payout (3) and �nd that the mark-to-market value of the swap M (t) is given by
Equation (7), where Kt is the risk neutral expectation of V (t; T ) conditioned
on information available at time t.

Assume for the moment that the risk-free rate is identically zero. Then it is
easy to derive the formula

�M = N �
�

1

T � t0
V (t; t+�t)�t+ (1� �t+�t)�K � 1

T � t0
Kt�t

�
; (13)

where V (t; t+�t) is the realized (annualized) variance over the time interval �t,
and �K is the change in variance strike over the same period, Kt+�t�Kt. Put
more directly, the change in value of a variance swap over a period is determined
by realized variance, change in strike and the length of the time period itself.

As we will discuss in the next section, the variance strike Kt depends only
on the volatility skew for options with expiry T , and therefore the quantity �K
is determined by changes in the implied volatility surface over the interval �t.
If it is assumed that this surface evolves according to a continuous di�usion
process, then �K = O(

p
�t); that is, changes in K over the period �t are on

the order of size
p
�t:

As the realized variance over �t is bounded and Kt is known, the �rst and
third terms of (13) are of size �t. Thus movement of Kt dominate the mark-to-
market risk. A related observation is that the sensitivity of the market value of a
variance swap to changes in the underlying asset price (the \delta" of the swap)
is small and goes to zero as �t! 0. This follows from the usual approximation
for realized variance over a short interval (from Equation (2))

V (t; t+�t)�t �
�
�S

S(t)

�2
: (14)

Note that from this formula we see that continuous asset price movements are
negligible over short horizons, but the swap's value is still sensitive to price
jumps. The sensitivity ofM (t) to time decay, under constant asset and volatility
levels (the � of the swap), can be seen from (13) to be

� = �N Kt

T � t0
: (15)
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For the case of a non-zero interest rate that is constant over �t, let �t =
exp(�r(T�t)). The change in the market value of the swap over �t is essentially
the same as (13) with the exceptions that the time decay term becomes

� = rMt �N�t
Kt

T � t0
; (16)

and N is replaced by N�t.
The upshot of all this is that if the O(�t) terms are dropped from (13), then

the resulting volatility of �M is equal to:

�(�M ) � (1� �)N�t �(Kt): (17)

Therefore the problem of de�ning the mark-to-market risk of a variance swap
is reduced to that of �nding the volatility of the variance strike Kt. We re-
emphasize that in this context Kt is the variance strike for a swap with time to
maturity T � t: This implies that as swaps evolve, the holder is exposed to the
volatility of variance strike for all possible maturities less than the maturity of
the swap itself. Thus, studying variance swap risk requires that we understand
the volatility of variance strikes for all possible maturities. We will explicitly
discuss strategies for computing �(Kt) at a later point in this paper, but �rst
we digress to discuss in more detail the formation of the variance strike Kt:

5 Mathematical Modeling

To model the volatility of the variance strike and its movements, it is helpful
to consider a formula for the variance strike in terms of the implied volatility
surface. As described in recent articles (Carr and Madan (1998) and Demeter�,
et al (1999)), the fair strike level is obtained by essentially taking a weighted
average of option prices (where \options" refers to options on the swap's un-
derlying asset) across all strikes for options expiring on the swap's expiration.
This average can be reformulated in terms of the implied volatility surface as
follows:

Kvar(t) =
1p
2�

Z
1

�1

f(�(z; T � t); z; T � t) exp(�z2=2) dz (18)

where

f(�; z; T � t) =
2

T � t

�
�(z; T � t) � z �

p
T � t+

1

2
�2 � (T � t) � @�

@z
�
p
T � t

�
(19)

(see Moroko� et al (1999) for details of this derivation). The function �(z; T�t)
is a representation of the entire implied volatility surface in terms of time and
a parameter z related to strike price that is de�ned below.

The importance of Equations (18) and (19) lies in the explicit representation
of the variance strike as a function of the implied volatility surface. Understand-
ing the relationship between the implied volatility skew, particularly for the
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unobservable far out-of-the-money regions, and the variance strike provides in-
sight into the pricing as well as the risks associated with these swaps. Equations
(18) and (19) also provide a convenient representation for numerical valuation
of Kvar as well as the uctuations of Kvar due to uctuations in the implied
volatility surface. These issues are explored in detail in the next sections.

6 Strike Risk: Models From Time Series

As the dominant factor inuencing mark-to-market risk is movements in the
variance strike of an o�setting swap, we will discuss at some length various
techniques for modeling the variance strike. There are two basic methods.
One is to directly model the time series behavior of the variance strike in order
to make precise statements about its conditional distribution at a give time. The
other is to build a model for movements of the implied volatility surface, and
then use that model combined with equation (18) to make precise statements
about the conditional distribution of the variance strike at a given time.

If time series for variance strikes with speci�c �xed maturities are available,
then by assuming a time series model for �K (e.g., GARCH or exponential
decay with normal or fat-tailed innovations, etc.) one can calibrate the model
to the available data to yield a conditional distribution for the variance swap
strike.

If an adequate time series for the variance strike is not available, an alternate
approach is to use the movements in the square of at-the-money implied volatil-
ities as a proxy for movements of the fair value of variance. If IVT�t represents
a time series of at-the-money implied volatility for options with time T � t to
expire, then the implied time series

�KT�t = IV 2
T�t � L IV 2

T�t (20)

(where L is the one-period lag operator) represents an approximation for histor-
ical changes in variance strike. If this series can be constructed for a variety of
maturities, then through judicious use of interpolation one can form a complete
set of time series models for the KT�t for various maturities. These in turn
can be used to estimate �(�KT�t) for any maturity T � t. As volatility of
at-the-money implied variance for various maturities is relatively easy to obtain
for most equity indices (at least for maturities of one year or less), this provides
a simple estimate of the market risk of a variance swap in cases for which time
series for the real variance swaps are not available.

7 Strike Risk From Implied Volatility Models

The simple approximation of modeling uctuations of variance strike as the
volatility of implied at-the-money variance can be made more rigorous by in-
troducing an implied volatility surface model �(z; T � t) for use with Equation
(18). We begin by considering the e�ect of the volatility skew on the variance
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strike, then continue on to consider how uctuations of the volatility surface
inuence the changes in the variance strike.

7.1 Dependence of Variance Strike on Skew

The variable z is related to volatility and strike price � by

z(x) =
� logx� :5�2(T � t)

�
p
T � t

: (21)

Here x is the ratio of the forward price of the underlying asset F (for a forward
with expiry T ) to the strike price, so that x = F=�.

The implied volatility surface � can be modeled in a number of ways (as in,
e.g. Brown and Randall (1999), Moroko� et al (1999)). If the volatility skew
for options with expiry T is modeled as a function of x, so that � = �(x), then
Equation (21) implicitly de�nes � as a function of z. This assumes that both
�(x) and z(x) are monotonic functions, which for equity indices is reasonable.

The z of Equation (21) is more commonly known as the \d2" variable that
appears in the Black-Scholes option pricing formula. The integration over z is
equivalent to the integration over all strikes that appears in the usual variance
swap strike formulas.

Alternatively, z can be related to a put option's delta through the formula
Black-Scholes expression

� = N (z + �
p
T � t)� 1; (22)

where � is the put's delta and N (�) is the cumulative normal distribution func-
tion. Another commonmodel for implied volatility assumes that � is a function
of � in which case we have

z = N�1(� + 1)� �(�)
p
T � t : (23)

Again assuming that z(�) and �(�) are monotonic, this relationship can be
inverted to give �(z).

Once a suitable model for the implied volatility has been chosen, either as a
function of strike or delta, and the associated function �(z) has been determined,
the variance strike Kvar can then be computed.

The function � will also depend on a number of parameters that may be
associated with quantities like the implied volatility level, the slope of the skew,
etc. As a simple illustration, we consider the model

�(�) = �0 + bf(�) (24)

where f(�) describes the shape of the skew (e.g., linear) and has the property
f(�:5) = 0 so that the at-the-money volatility is �0. For this model, dependence
on time to expiry will be suppressed. We now illustrate how the choice of the
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Figure 1: Implied volatility modeled as a function of put delta

parameters and the skew shape can inuence the variance strike. We consider
the following three cases:

Case 1 �0 = :234 b = 0

Case 2 �0 = :234 b = :162 f(�) = :5 + �

Case 3 �0 = :234 b = :162

(
f(�) = :5 + � � � �:25
f(�) = 1:2 + 6:6� + 11:2�2 � > �:25

The �rst case is constant volatility, while the second case is a linear skew model
considered in Demeter�, et al (1999). The third case matches the second case
over the usual range of observable options, but sets a substantially higher volatil-
ity for far out-of-the-money puts (� > �:25), with a maximum implied volatility
of around 43%. The functions �(�) are plotted in Figure 1. for these three cases,
while the corresponding �(z) are plotted in Figure 2. For these calculations T�t
is taken to be 1 year.

The plots in Figure 2 clearly show the di�erence that volatility skew makes
in determining the variance swap strike, and in particular the e�ect of the
implied volatility for far out-of-the-money puts. Although Cases 2 and 3 are
essentially the same over the range of commonly traded deltas, the model that
allows greater steepness in skew outer ranges of delta (a reasonable possibility)
leads to signi�cantly di�erent results. For the case of constant volatility, it is
easy to see that Equation (18) integrates to give Kvar = �20 = 0:0548. For
Case 2, Kvar = :0623, a 14% increase attributable to the skew. For Case 3,
Kvar = :0735, an additional 18% larger than Case 2.
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Figure 2: Implied volatility modeled as a function of z (Black-Scholes d2)

The choice of a variance (or volatility) strike is in e�ect a statement of the
dealer's views on the unobservable implied volatility of far out-of-the-money
puts, or equivalently, a measure of the dealer's risk aversion to low probability
events. A major source of market risk for a variance swap therefore lies in the
possibility of changes in the dealer's level of risk aversion, an event that cannot
be e�ectively modeled.

7.2 Strike Risk Arising From Implied Volatility

Equation (18) shows that the variance strike depends only on the implied volatil-
ity surface. Therefore the risk associated with Kt can be modeled by describing
the evolution of the volatility surface. In general, if the surface can be parame-
terized by a set of P parameters �, as well as the strike variable z and time to
expiry T � t, then under a linear approximation

�� =
PX
i=1

@�

@�i
��i : (25)

The associated change in Kt is then given by

�Kt =
PX
i=1

�
1p
2�

Z
1

�1

@f(�(z; T � t); z; T � t)

@�i
exp(�z2=2) dz

�
��i (26)
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and

@f(�; z; T � t)

@�i
=

2

T � t

��
z �
p
T � t+ � � (T � t)

� @�

@�i
� @

@z

�
@�

@�i

�p
T � t

�
:

(27)

Once a parameterized model for �(�; �) or �(K=F;�) is selected, it can be
calibrated to the observable option prices, as well as to any views related to
the unobservable strikes, to obtain the current �. From this, the coe�cients
of the ��i that appear in Equation (26) can then be evaluated. A historical
time series for the ��i can be generated from the historical implied volatility
data, leading to a model for the distribution of the stochastic variable ��i. As
�Kt is linear in the ��, the distribution of �Kt is then easily computed. For
example, if �� is modeled as multi-variate normal, then �Kt is also normally
distributed.

As an example, consider the simply linear model described above for implied
volatility as a function of option delta (Case 2). Here the parameters are �1 = �0
and �2 = b. Setting the current values of the parameters to those used above
(�1 = :234, �2 = :162 and T � t = 1) and numerically evaluating the integrals
in (26) leads to the model

�Kt = 0:49��1+ 0:061��2 : (28)

From daily implied volatility data for � = (�:75;�:5;�:25) on 12 month S&P
options, the time series for ��1 and ��2 can be generated, leading to the
covariance matrix (based on data from June 1998 to July 1999 weighted with
20% monthly decay)

Cov(��1;��2) = 10�4
�

.385 .364

.364 .908

�
(29)

Under the assumption of normality, then �Kt is normally distributed with
mean zero and volatility 0.0034, which is very close to the volatility of the at-
the-money implied variance. For a two year variance swap with one year left to
expiry, a notional of 10 million dollars and a risk free rate of 5%, this puts the
daily uctuation of market value at around .016 million.

8 Jump Risk

Finally we consider the e�ects of jumps in the underlying asset and volatility
processes. There are three ways in which such jumps a�ect the market risk of
a variance swap. First, a large daily return for the asset can spike the realized
variance, causing an increase in the market value of the swap. This e�ect is
mitigated by the fact the each daily return carries a weight of only �t. To a
certain extent, the existence of some larger returns has already been priced into
the swap. An analysis of the replication strategy (see Demeter�, et. al.) shows
that for a variance swap hedged by this strategy the P&L error associated with
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a daily return J is O(J3). For typical di�usion returns, J = O(
p
�t) so that

the P&L error is negligible. However, when a large jump J occurs, errors of
size J3 can throw o� the balance between the realized variance and the variance
strike. An interesting observation is that the sign of the J3 error term depends
on whether realized variance is measured as a percent return or a log return. A
related hedging problem associated with jumps in the asset level is that this level
may jump out of the range of validity of the approximation to the theoretical
static hedge. More precisely, the �nite number of options over a limited strike
range initially available may not be adequate to replicate the variance if the
asset moves out of this range.

A potentially larger source of jump risk arises from jumps in the implied
volatility surface, and therefore unusually large uctuations in Kt. Such jumps
are generally correlated with jumps in the asset level. This risk can be captured
to a certain extent by modeling the distribution of Kt or of the underlying
factors � of �(�; T; z) with fat-tailed distributions such as a mixture of normals.
Such an approach should adequately model the risks associated with changes in
implied volatility in the typically observable range of strikes.

Finally, jumps in asset level or observable implied volatility can induce large
changes in the level of risk tolerance or aversion of a �rm, and thus change
the variance strike substantially beyond what the observable implied volatility
uctuations indicate. This e�ect is hard to measure as it depends more on the
current risk appetite of a broker than a historical time series of � or Kt may
indicate.
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